Computational Support for Metabolomics: Databases, Analysis, and Visualization

Pedro Mendes
http://www.vbi.vt.edu/~mendes

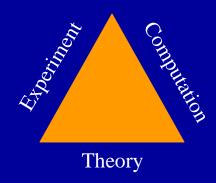
Scope

Have data, want knowledge

- Definitions
- Database issues
- Data analysis
- Biochemical networks for visualization

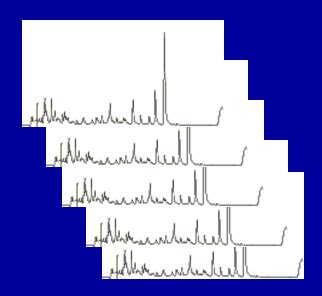
Definitions

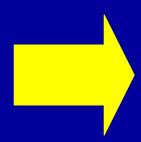
- Metabolic profiling
 - Usually targeted to specimetabolites, often quan
- Metabolomics
 - Comprehensive measur complement of specific
- Metabolic fingerprinting
 - Collection of metabolic patterns which are used for characterization of particular states



Definitions

- Metabonic profiling
 - Usually targeted to specific classes of metabolites, often quantitative
- Metabonomics
 - Comprehensive measurement of the metabolite complement of specific species or cell types
- Metabonic fingerprinting
 - Collection of metabolic patterns which are used for characterization of particular states

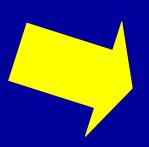

Systems Biology

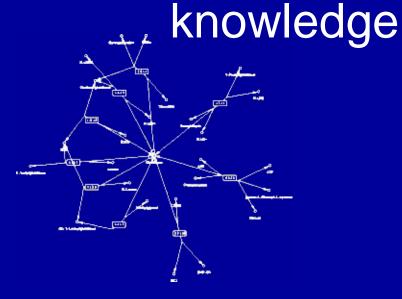


- Quantitative whole-cell measurements (all mRNAs, all proteins, all sugars, etc.)
- Theoretical basis for explaining observations
- Synthesis of results through mathematical (computer) models

What this talk is not about...

ATP	1.277352	
NADH	8.063249	
NADPH	3.408609	
ADP	1.554963	
Orthophosphate	3.689995	
CoA	8.182627	
Pyrophosphate	9.292951	
NH3	9.952874	
S-Adenosyl-L-methionine	2.86405	
AMP	9.696645	
S-Adenosyl-L-homocysteine	4.708032	
Pyruvate	8.779411	
Acetyl-CoA	7.420493	
L-Glutamate	7.226892	
2-Oxoglutarate	1.709104	
UDPglucose	9.610996	
D-Glucose	0.222737	
Acetate	8.071287	
GDP	9.853982	
Oxaloacetate	5.882063	
Glycine	2.372851	
L-Alanine	6.422998	
Succinate	4.245424	
UDP-N-acetyl-D-glucosamine	5.108658	
GTP	6.890642	
L-Lysine	6.186211	
Glyoxylate	9.115576	
L-Aspartate	9.188168	
Glutathione	5.232367	
UDP-D-galactose	4.903077	
Formate	4.424477	
L-Arginine	4.278822	
L-Glutamine	6.067831	
L-Serine	7.690047	
Formaldehyde	1.427103	
Thiamin diphosphate	6.424938	
Alcohol	4.974474	
Ascorbate	1.747568	
L-Methionine	5.809962	
Phosphoenolpyruvate	8.066765	
L-Ornithine	9.29803	
L-Tryptophan	4.057345	
L-Phenylalanine	5.560732	
L-Tyrosine	0.989049	
Malonyl-CoA	5.070652	
Acetaldehyde	3.270844	
D-Fructose 6-phosphate	4.458931	
Sucrose	8.617488	




Rather...

data

ATP NADH 1.277352 8.063249 NADPH 3.408609 1.554963 ADP Orthophosphate 3.689995 CoA 8.182627 Pyrophosphate 9.292951 NH3 S-Adenosyl-L-methionine 9.952874 2.86405 9.696645 S-Adenosyl-L-homocysteine 4.708032 Pyruvate Acetyl-CoA 8.779411 7.420493 L-Glutamate 7.226892 2-Oxoglutarate UDPglucose 1.709104 9.610996 D-Glucose 0.222737 Acetate 8.071287 GDP 9.853982 5.882063 Oxaloacetate Glycine 2.372851 L-Alanine 6.422998 4.245424 Succinate UDP-N-acetyl-D-glucosamine 5.108658 GTP 6.890642 L-Lysine 6.186211 Glyoxylate L-Aspartate 9.115576 9.188168 Glutathione 5.232367 UDP-D-galactose 4.903077 4.424477 Formate 4.278822 L-Arginine L-Glutamine 6.067831 L-Serine 7.690047 1.427103 Formaldehyde Thiamin diphosphate 6.424938 Alcohol 4.974474 1.747568 Ascorbate L-Methionine 5.809962 Phosphoenolpyruvate 8.066765 L-Ornithine 9.29803 4.057345 L-Tryptophan L-Phenylalanine 5.560732 L-Tyrosine 0.989049 Malonyl-CoA 5.070652 Acetaldehyde 3.270844 D-Fructose 6-phosphate 4.458931 Sucrose 8.617488

$$\dot{A} = \frac{V_{1}}{1 + \frac{S}{K_{1S}} + \frac{A}{K_{1A}}} - \frac{(^{12} K_{2A})(^{12} S \cdot K_{2eq})(^{12} K_{2A} K_{2B})}{\left(\frac{A}{K_{2A}} + \frac{B}{K_{2B}}\right)^{h} + \frac{1 + \left(\frac{C}{K_{2C}}\right)^{h}}{1 + \alpha \left(\frac{C}{K_{2C}}\right)^{h}}}$$

$$\dot{B} = \frac{\left(V_{2}^{f} \frac{A}{K_{2A}}\right)\left(1 - \frac{B}{S \cdot K_{2eq}}\right)\left(\frac{A}{K_{2A}} + \frac{B}{K_{2B}}\right)^{h-1}}{\left(\frac{A}{K_{2A}} + \frac{B}{K_{2B}}\right)^{h} + \frac{1 + \left(\frac{C}{K_{2C}}\right)^{h}}{1 + \alpha \left(\frac{C}{K_{2C}}\right)^{h}}} - \frac{V_{3}^{f} \frac{B}{K_{3B}} - V_{3}^{r} \frac{C}{K_{3C}}}{1 + \frac{B}{K_{3B}} + \frac{C}{K_{3C}}}$$

$$\dot{C} = \frac{V_{3}^{f} \frac{B}{K_{3B}} - V_{3}^{r} \frac{C}{K_{3C}}}{1 + \frac{C}{K_{3C}}} - \frac{V_{4}^{f} \frac{C}{K_{4C}} - V_{4}^{f} \frac{P}{K_{4P}}}{1 + \frac{C}{K_{4C}} + \frac{P}{K_{4P}}}$$

Databases for Metabolomics

- Laboratory metabolic profile databases
- Species-specific metabolic profile databases
- Generic metabolic profile databases
- Qualitative metabolome databases
- Reference biochemical databases

Mendes (2002) "Emerging Bioinformatics for the Metabolome". *Briefings in Bioinformatics* **3**, 134-145

Lab metabolic profile DB

- Act as primary data sources
- Store data about all experimental details (i.e. metadata)
- Narrow in topic, deep in information content
- Should export data in standard formats to allow for interoperability with other DBs

Species metabolic profile DB

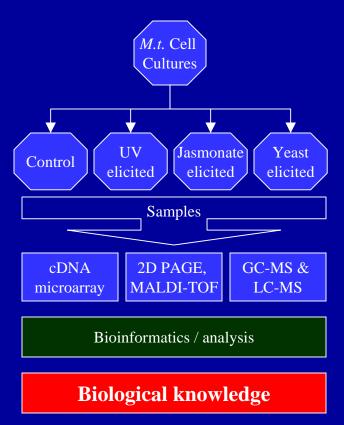
- Collect all experiments published for one species
- Collect data for other types of experiments too (e.g. sequencing, microarrays)
- These are the primary point of entry for species-related information
- Examples:
 - TAIR
 - MaizeDB

Generic metabolic profile DB

- Collects all published metabolic profiles
- Profiles must allow comparisons
- Due to size constraints, will not store much raw data, but will reference where it is (lab DB, literature)
- Few of these, preferably all mirroring the same data

Qualitative metabolome DBs

- List all metabolites observed
- The data could be for a single organism or organized taxonomically
- This would be the equivalent to gene databases, as the list is of all potential metabolites that could be seen in an organism

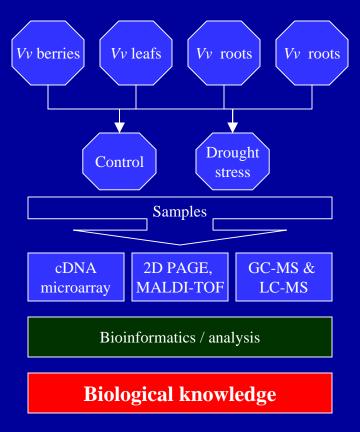

Reference biochemical DBs

- Contain reference information about biochemistry
- Many exist already: KEGG, WIT, EcoCyc, PathDB, PFMM, UM-BBD, BRENDA, SoyBase, etc.
- KEGG is perhaps the most popular, due to its nice pathway diagrams

An integrated approach to functional genomics and bioinformatics in a model legume

Mendes, Dixon, Sumner, May, Weller, Smith

- Focus on the isoflavonoid pathway
- The data set contains information relevant to other processes too
- Quantification is important
- The ultimate aim is to derive causal relationships

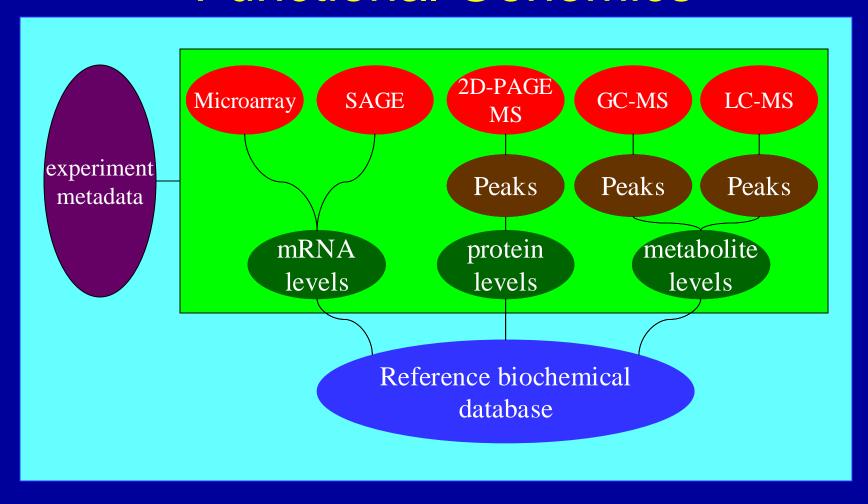


http://medicago.vbi.vt.edu

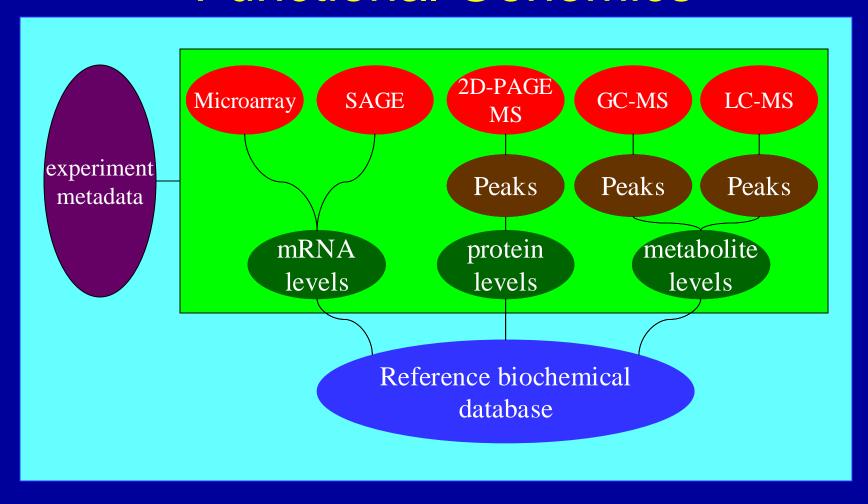
Integrative Functional Genomic Resource Development in *Vitis vinifera*: Abiotic Stress and Wine Quality.

Cramer, Cushman, Mendes, Schooley

- Focus on flavor and stress compounds
- The data set contains information relevant to other processes too
- Quantification is important
- The ultimate aim is to derive causal relationships



DOME, a Database for Functional Genomics



Metadata

- To allow merging data of several types, it is essential that the database captures the data about the experiments.
- In DOME, experimental designs are represented in a finely structured classification.
- The database is general enough that it can store different kinds of experiments, such as time series or steady state experiments.
- The experimental metadata is what allows one to initially combine microarray, proteomic and metabolite profile samples.

DOME, a Database for Functional Genomics

Desired properties of reference DBs

- All metabolites should be specific
 - no "an alcohol", "acyl-CoA", "amino acids", etc.
- Enzymes should be single-entities
 - include all isoenzymes, etc.
- It is preferable to have fewer data if these are more reliable!
- Facts should be substantiated:
 - References
 - Classify evidence
- None of the existing reference DBs comply with all the requirements listed here

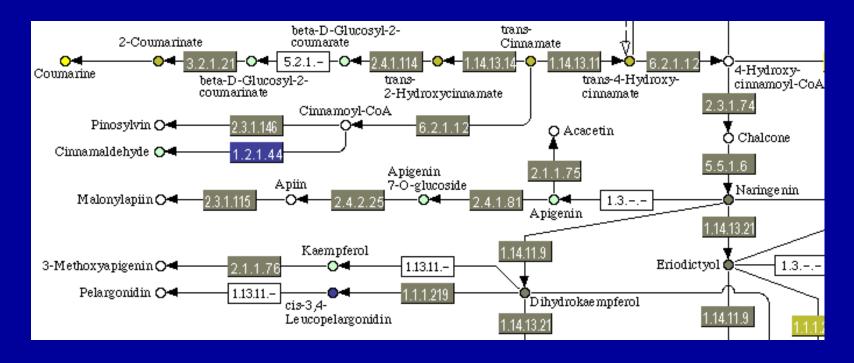
B-Net, a reference biochemical database

- To provide a reference for our metabolomic analyses and visualization
- Species specific
- Stores facts recovered from the literature
- Original metabolite data from KEGG, NIST and TAIR, reactions from EC, followed by draconian curation
- Also serves as a qualitative metabolome database

Computer-assisted curation

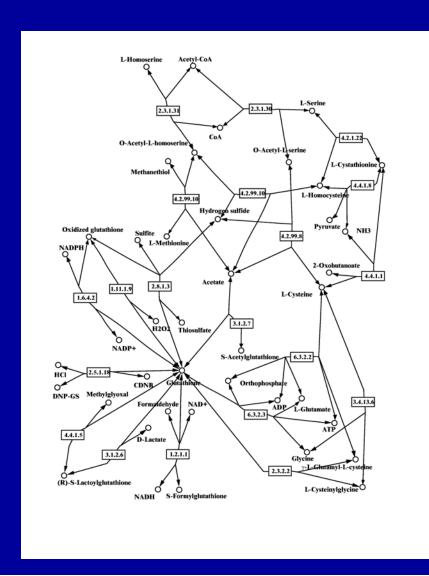
Algorithms for Data Analysis

- Unsupervised methods (looking for patterns)
 - Clustering, PCA
 - Self-organizing maps
- Supervised methods (calibration)
 - Nonlinear regression
 - Feed-forward neural networks
 - Genetic algorithms
- System identification (reverse engineering)
 - Bayesian belief networks
 - Metabolic control analysis
 - Nonlinear dynamics



Metabolic networks for visualization and data integration

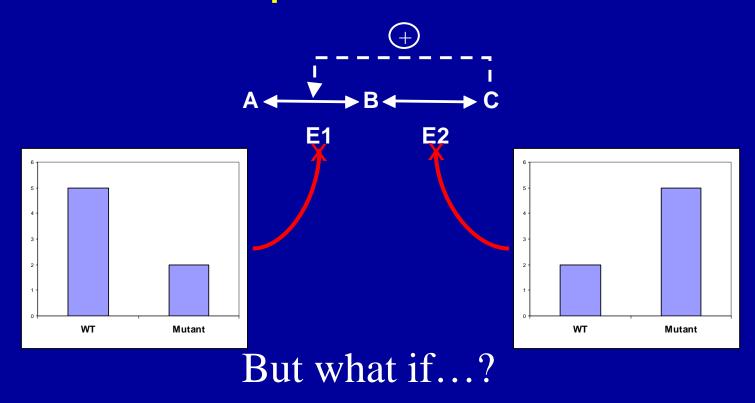
- Metabolic diagrams can be used to visualize metabolomic data together with gene expression or proteomics
- Useful to display data from one sample or to compare two samples
- KEGG has nice diagrams that can be used for this purpose


Data integration through metabolic networks

- KEGG maps do not include all side reactions
- Not all biochemistry can be reduced to a template

Known glutathione neighborhood in *S. cerevisiae*

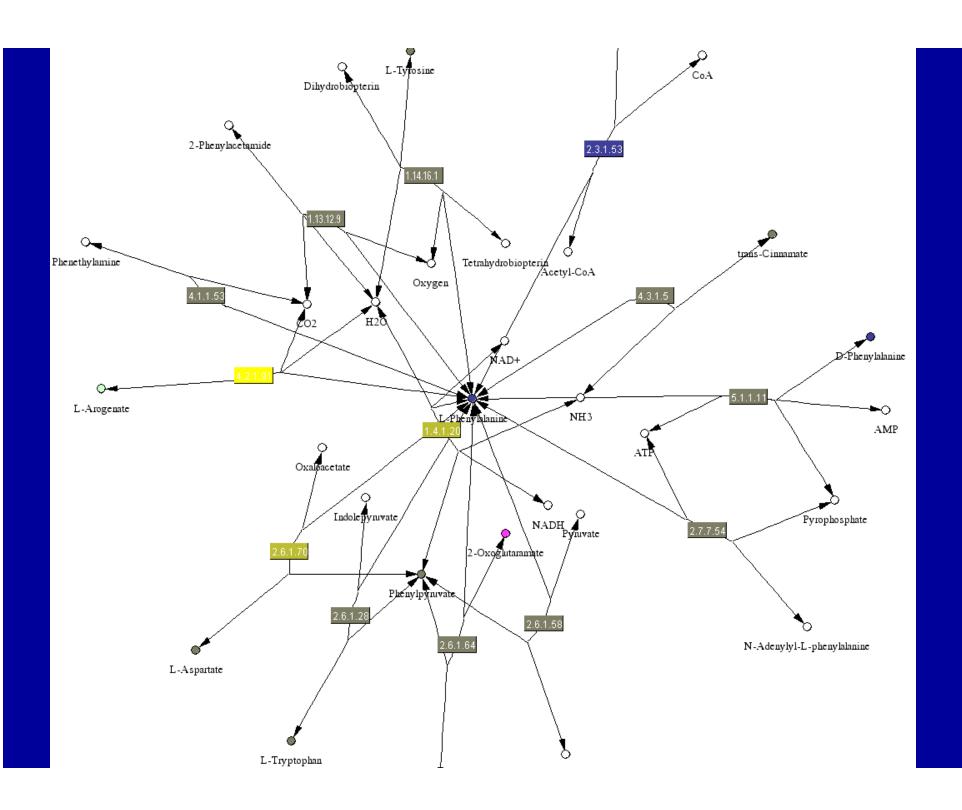
- All metabolites but H2O are included
- Each metabolite appears only once
- Reactions are included if:
 - Reaction observed directly
 - Gene for enzyme detected in genome


Small World Inside Metabolic Networks

Rank by degree	connectivity	Rank by distance	Importance no.
Glutamate	51	Glutamate	2.46
Pyruvate	29	Pyruvate	2.59
CoA	29	CoA	2.69
2-oxoglutarate	27	Glutamine	2.77
Glutamine	22	Acetyl CoA	2.86
Aspartate	20	Oxoisovalerate	2.88
Acetyl CoA	17	Aspartate	2.91
Phosphoribosyl PP	16	2-Oxoglutarate	2.99
Tetrahydrofolate	15	Phosphoribosyl PP	3.10
Succinate	14	Anthranilate	3.10
3-Phosphoglycerate	13	Chorismate	3.13
Serine	13	Valine	3.14
Oxoisovalerate	12	3-Phosphoglycerate	3.15

• Wagner & Fell (2001), *Proc. R. Soc. Lond. B* **268**, 1803-1810.

Beware of simplistic ad-hoc interpretations...



- Chance, B., Holmes, W., Higgins, J. & Connelly, C. M. (1958) Localization of interaction sites in multi-component transfer systems: theorems derived from analogues., *Nature.* 162, 1190-1193.
- Heinrich, R. & Rapoport, T. A. (1974) A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector., *Eur. J. Biochem. 42*, 97-105.

Metabolite neighborhoods

- Metabolic pathways are an artificial concept derived from historical developments
- Biochemical network is highly interconnected
- Difficult to visualize the whole network
- Metabolite neighborhood is the set of reactions that are connected to a center metabolite, plus all other metabolites that are part of those reactions

Concentration versus Flux

$$J_{x}(t) = \frac{dx}{dt} \approx \frac{x_{t} - x_{t-\tau}}{\tau}$$

- Flux is no more than the time derivative of concentration
- But flux is independent of concentration:

$$\xrightarrow{1}$$
 M $\xrightarrow{2}$

Acknowledgements

- Stefan Hoops
- Paul Brazhnik
- Dingjun Chen
- Ana Martins
- Aejaaz Kamal
- X. Jing Li
- Alberto de la Feunte
- Diogo Camacho
- Wei Sha

- Mudita Singhal
- M. Kulkarni
- Liang Xu
- Jessica Caldwell
- Robin Oakes
- Fernina Taliaferro
- Anh Tran
- Olga Brazhnik
- Sinan Güler
- Rohan Luktuke

- VBI: Shulaev, Laubenbacher
- Noble Foundation:Dixon, Sumner, May
- U. Nevada-Reno: Cramer, Cushman, Schooley
- Johns-Hopkins: Sullivan
- National Science Foundation
- Commonwealth of Virginia

